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Abstract

In recent years, I/O-efficient algorithms for a wide variety of problems have

appeared in the literature. Thus far, however, systems specifically designed

to assist programmers in implementing such algorithms have remained scarce.

TPIE is a system designed to fill this void. It supports I/O-efficient paradigms

for problems from a variety of domains, including computational geometry,

graph algorithms, and scientific computation. The TPIE interface frees pro-

grammers from having to deal not only of explicit read and write calls, but also

the complex memory management that must be performed for I/O-efficient
computation.

In this paper, we discuss applications of TPIE to problems in scientific

computation. We discuss algorithmic issues underlying the design and imple-

mentation of the relevant components of TPIE and present performance results

of programs written to solve a series of benchmark problems using our current

TPIE prototype. Some of the benchmarks we present are based on the NAS

parallel benchmarks [5], while others are of our own creation.

We demonstrate that the CPU overhead required to manage I/O is small

and that even with just a single disk the I/O overhead of I/O-efficient compu-

tation ranges from negligible to the same order of magnitude as CPU time. We

conjecture that if we use a number of disks in parallel this overhead can be all
but eliminated.

"Supported in part by the U.S. Army Research Office under grant DAAH04-93-G-0076 and by
the National Science Foundation under grant DMR-9217290. Portions of this work were conducted
while visiting the University of Michigan and Duke University.

tSupported in part by the National Science Foundation under grant CCR-9007851 and by the
U.S. Army Research Office under grants DAAL03-91-G-0035 and DAAH04-93-G-0076.
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1 Introduction

The Input/Output communication between fast internal memory and slower sec-

ondary storage is the bottleneck in many large-scale applications. The significance of

this bottleneck is increasing as internal computation gets faster and parallel comput-

ing gains popularity [17]. CPU bandwidth is currently increasing at a rate of 40-60%

per year, versus an annual increase in bandwidth of 7-10% for disk drives [18]. Main

memory sizes are also increasing, but not fast enough to meet the needs of many

large-scale applications. Additionally, main memory is roughly two orders of magni-

tude more expensive than disks. Thus, if I/O-efficient code can be written so as to

provide performance near that obtained by solving the same problem on a machine

with a much larger RAM, a great deal of money can be saved.

Up to this point, a great many I/O-efficient algorithms have been developed. The

problems that have been considered include sorting and permutation-related problems

[1, 2, 14, 15, 22], computational geometry [3, 4, 11, 23] and graph problems [7]. Until

recently, there had been virtually no work directed at implementing these algorithms.

Some work has now begun to appear [6, 19], but to the best of our knowledge no

comprehensive package designed to support I/O-efficient programming across multiple

platforms and problem domains has appeared. One goal of our ongoing research is

to remedy this problem. Towards that end, we are developing TPIE, a transparent

parallel I/O environment designed to facilitate the implementation of I/O-efficient

programs.

In this work, we describe a series of experiments we have run using a prototype

implementation of the THE interface. The experiments were chosen as models of

common operations in scientific codes. Several of the experiments are on NAS parallel

benchmarks designed to model large-scale scientific computation [5]. The results of

our experiments demonstrate that I/O-efficient programs can be written using a high-

level, portable, abstract interface, yet run efficiently.

In Section 2, we introduce the parallel I/O model of computation on which the

algorithms that TPIE implements are based. In Section 3, we describe the TPIE

system itself and the structure of our current prototype. In Section 4, we discuss

the benchmarks we implemented, the algorithms that TPIE uses, and the perfor-

mance of our implementations. Finally, we list a number of open problems worthy of

examination in the continued pursuit of I/O-efficient computation.

2 The Parallel I/O Model of Computation

The algorithms TPIE uses are typically based on those designed for the parallel I/O

model of computation [22]. This model abstractly represents a system having one or

more processors, some fixed amount of main memory, and one or more independent

disk drives. It is described by the following parameters:

N -- # of items in the problem instance

M -- # of items that can fit into main memory
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B = # of items per disk block

D = # of disks.

We define an I/O operation, or simply an I/O for short, to the be process of trans-

ferring exactly one block of data to or from each disk. The I/O complexity of an

algorithm is simply the number of I/Os it performs.

In discussing the I/O complexity of algorithms, we make every effort to avoid the

use of big-Oh asymptotic notation. Instead, we are interested in as exact a figure as

possible for the number of I/Os an algorithm will use for a given problem size and run-

time environment. In some cases, the relative effect of rounding up certain quantities

to the their integral ceilings can be significant, for example, when quantities round

to small natural numbers. This effect is typically ignored when big-Oh notation is

used. We are careful in this work to consider ceilings explicitly when their effect is

significant; we use the ceiling notation Ix] to denote the smallest integer that is _> x.

3 TPIE: A Transparent Parallel I/O Environment

TPIE [20, 21] is a system designed to assist programmers in the development of I/O-

efficient programs for large-scale computation. TPIE is designed to be portable across

a variety of platforms, including both sequential and parallel machines with both

single and multiple I/O devices. Applications written using THE should continue

to run unmodified when moved from one system that supports TPIE to another.

In order to facilitate this level of portability, THE implements a moderately sized

set of high-level access methods. The access methods were chosen based on their

paradigmatic importance in the design of I/O-efficient algorithms. Using these access

methods, we can implement I/O-efficient algorithms for many problems, including

sorting [2, 15, 16, 22], permuting [8, 9, 10, 22], computational geometry problems [3,

4, 11, 23], graph-theoretic problems [7]. and scientific problems [8, 13, 22].

Because such a large number of problems can be solved using a relatively small

number of paradigms, it is important that the access method implementations remain

flexible enough to allow application programs a great deal of control over the func-

tional details of the computation taking place within the fixed set of paradigms. To

accomplish this, TPIE takes a somewhat non-traditional approach to I/O. Instead of

viewing computation as an enterprise in which code reads data, operates on it and

then writes results, we view it as a continuous process in which program objects are

fed streams of data from an outside source and leave trails of results behind them.

The distinction is subtle, but significant. In the TPIE model, programmers don't

have to worry about making explicit calls to I/O subroutines or managing internal

memory data structures in a run-time dependent environment. Instead, they merely

specify the functional details of the computation they wish to perform within a given

paradigm. TPIE then choreographs an appropriate sequence of data movements to

keep the computation fed.

TPIE is implemented in C++ as a set of templated classes and functions and

a run-time library. Currently, a prototype implementation supports access to data
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storedon oneor moredisksattachedto a workstation.1Ill the future, weplan to port
the interfaceto larger multiprocessorsand/or collectionsof workstationsconnectedto
a high-speedLAN. From the programmer'sperspective,very little will changewhen
the system movesto parallel hardware. All the sameaccessmethods will continue
to exist, and applications will still be written with a single logical thread of control,
though they will be executedin a data parallel manner.

The current TPIE prototype is a modular system with three components. The
AccessMethod Interface (AMI) providesthe high-levelinterface to the programmer.
This is the only componentwith which most programmerswill needto directly in-
teract. The Block Transfer Engine (BTE) is responsiblefor moving blocks of data
to and from the disk. It is also responsiblefor schedulingasynchronousread-ahead
and write-behind when necessaryto allow computation and I/O to overlap. Finally,
the Memory Manager(MM) is responsiblefor managingmain memory resources.All
memory allocated by application programsor other componentsof THE is handled
by the MM. In the caseof application programs,this is facilitated through the useof
a global operator new() in the THE library.

The AMI supportsaccessmethodsincludingscanning,distribution, merging,sort-
ing, permuting, and matrix arithmetic. In order to specify the functional details of a
particular operation, the programmerdefinesa particular classof object calleda scan
managementobject. This object is then passedto tile AMI, which coordinates I/O
and calls memberfunctions of the scanmanagementobject to perform computation.
Readersinterestedin the syntacticdetails of this interaction are referredto the TPIE
Manual, a draft versionof which is currently available [21].

4 TPIE Performance Benchmarks

The benchmarks we implemented work with four of the basic paradigms TPIE sup-

ports: scanning, sorting, sparse matrices, and dense matrices. The benchmarks il-

lustrate important characteristics not only of the TPIE prototype and the platform

on which the tests were run, but also of I/O-efficient computation in general. In the

exposition that follows we will discuss both.

Two of the benchmarks are based on the NAS parallel benchmarks set [5], which

consists of kernels taken from applications in computational fluid dynamics. Besides

being representative of scientific computations, these benchmarks also provide refer-

ence output values that can be checked to verify that they are implemented correctly.

In addition to the NAS benchmarks, there are two new benchmarks designed to fur-

ther exercise TPIE's matrix arithmetic routines.

Each of the benchmarks is accompanied by a graph illustrating the performance

of one or more TPIE applications written to execute it. The graphs show both overall

wall time and CPU time on the y-axis, as plotted against various problem sizes on

the x axis. Given adequate and appropriately utilized I/O bandwidth, the wall time

1The following workstation/OS combinations are supported: Sun Sparcstation/SunOS 4.x, Sun

Sparcstation/Solaris 5.x, DEC Alpha/OSF/1 1.x and 2.x, HP 9000/HP-UX.
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and CPU time curves would be identical; therefore, getting them as close together as

possible is an important performance goal. 2

All of the benchmarks were run on a Sun Sparc 20 with a single local 2GB SCSI

disk. The operating system was Solaris 5.3. Aside from the test application being

run, the system was idle. In all cases, TPIE was configured to restrict itself to

using 4 megabytes of main memory. I/O was performed in blocks of 64KB, with

read-ahead and write-behind handled by a combination of TPIE and the operating

system. The reason we used such a large block size was so that our computations

would be structurally similar, in terms of recursion and read/write scheduling, to the

same applications running on a machine with D = 8 disks and a more natural block

size of 8KB. On such a system, I/O performance would increase by a factor of close

to 8, whereas internal computation would be essentially unaffected.

4.1 Scanning

The most basic access method available in TPIE is scanning, which is implemented

by the polymorphic THE entry point AMI_scan(). Scanning is the process of se-

quentially reading and/or writing a small number of streams of data. Essentially

any operation that can be performed using O(N/DB) I/Os can be implemented as

a scan. This includes such operations as data generation, prefix sums, element-wise

arithmetic, inner products, Graham's scan for 2-D convex hulls (once the points are

appropriately sorted), selection, type conversion, stream comparison, and many oth-

ers. The functional details of any particular scan are specified by a scan management

object.

4.1.1 Scanning Benchmark

Because scanning is such a generic operation, we could have chosen any of a very wide

variety of problems as a benchmark. We chose the NAS benchmark NAS EP [5] for

two reasons: it was designed to model computations that actually occur in large-scale

scientific computation; and it can be used to illustrate an important class of scan

optimizations called scan combinations.

The NAS EP benchmark generates a sequence of independent pairs of Gaussian

deviates. It first generates a sequence of 2N independent uniformly distributed devi-

ates using the liner congruential method [12]. Then, it uses the polar method [12] to

generate approximately (Tr/4)N pairs of Gaussian deviates from the original sequence

of uniform deviates.

Performance of our TPIE implementation of NAS EP is shown in Figure 1. There

are three sets of curves, labeled "TPIE, 2 Scans," "THE, Optimized," and "Single

Variable."

2One obvious way to bring these curves together is to increase the CPU time by performing
additional or less efficient computation. Clearly, this is not the mechanism of choice. Instead, we
seek to reduce the overall time by reducing the amount of I/O and/or improving increasing the
overlap between computation and asynchronous I/O.
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Figure 1" NAS EP Benchmark

The distinction between the 2 scan TPIE curves and the optimized TPIE curves

is that in the former, two separate scans are performed, one to write the uniformly

distributed random variates and the other to read the uniformly distributed ran-

dom variates and write the Gaussian pairs, whereas in the latter, the two steps are

combined into a single scan. As expected, the optimized code outperforms the unop-
timized code.

This difference is significant not so much because it tells programmers they should

combine scans, as because of the fact that scan combination is a relatively straight-

forward optimization that can be automated by a preprocessor. Such a preprocessor

would parse the C++ text of a program and, where possible, construct hybrid scan

management objects. The scans would then be replaced by a single scan using the

hybrid object. Additionally, scans can often be piggy-backed on many other types of

operations, such as merges, distributions, sorts, and permutations.

Returning to Figure 1, the single variable curve plots the CPU performance of a

C++ program that does not perform any I/O at all, using TPIE or any other system.

Instead, each pair of random variates is simply written over the previously generated

pair in main memory. The purpose of this curve is to illustrate a fundamental lower

bound on the CPU complexity of generating the variates. By comparing this to the

CPU curves of the THE implementations, we can see that the CPU overhead associ-

ated with scheduling and performing I/O, communicating between the components of

TPIE, and interacting with the user supplied scan management object is quite small.

In the optimized case it amounts to approximately 20%.
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4.2 Sorting

Sorting is a fundamentalsubroutinein manycomputations. Thereare a tremendous
number of sorting algorithms which support many different modelsof computation
and assumptionsabout input format and/or key distribution. In this section we
discussa number of issuesrelated to sorting in external-memory,both theoretical
and practical.

4.2.1 I/O-Efficient Sorting Algorithms

With rare exception a, I/O-efficient comparison sorts fall into one of two categories,

merge sorts and distribution sorts. Merge sorts work from the bottom up, sorting

small subfiles and then combining them into successively larger sorted files until all

the data is in one large sorted file. Distribution sorts work from the top down by com-

puting medians in the data and then distributing the data into buckets based on the

median values. The buckets are then recursively sorted and appended to one another

to produce the final output. The I/O structure of radix sort resembles that of distri-

bution sort, except that the entire set of keys is involved in O((lgN/M)/(lg M/DB))

large O(M/DB)-way distribution steps.

One common technique for dealing with multiple disks in parallel is to stripe data

across them so that the heads of the D disks are moved in lock step with one another,

thereby simulating a single large disk with block size DB. On a striped disk system,

the I/O complexity of merge sorting N objects is

[ lg(N/:_t)
N [IOg(M/2DB ) N/M]--2_B |lg_) (1)

Each item is read once and written once in each pass, and all reads and writes are

fully blocked. The logarithmic factor is the number of levels of recursion required to

reduce merge subproblems of size M into the final solution of size N. Each stream is

double buffered, hence we can merge M/(2DB) streams at a time. If we are able to

compute medians perfectly with no additional cost, as in the case where the keys are

uniformly distributed, we can perform distribution sort in this same bound.

Asymptotically, the I/O bound (1) is not optimal for sorting. By using the D

disks independently, we can do distribution sort in

2k D__ lg(N/M)lg(M/2B) (2)

I/Os, where k _> 1 is a constant whose value depends on the complexity of finding

the medians, the quality of the medians as partitioning elements, and how evenly the

buckets are distributed over the D disks. Although the the denominator in (2) is

larger than the denominator in (1) by an additive term of lg D, the leading constant

factor in (2) is larger than that of (1) by a multiplicative factor of k. A number of

3For a recent example, see [3].
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independentdisk distribution sort algorithms exist [1, 15, 16, 22], with valuesof k

ranging from approximately 3 to 20.

Before implementing an external sort on parallel disks, it is useful to examine the

circumstances under which the I/O complexity (2) for using the disks independently

is less than the I/O complexity (1) with striping. If we neglect the ceiling term for the

moment, algebraic manipulation tells us that it i_ better to use disks independently
when

<D.

Thus, D must be at least some root of M/2B. The critical issue now becomes the

value of k. If k = 1 (i.e., if we do not need extra I/Os to compute M/2B medians

that partition the data evenly and if each resulting bucket is output evenly among

the D disks), it is better to use disks independently. However, if k = 4, we need

D > (M/2B) 3/4 in order for using disks independently to be worthwhile, which is

not the case in current systems. For this reason, TPIE implements both merging and

distribution in a striped manner. Work is continuing oil developing practical methods

that use disks independently.

Another important aspect of the behavior of I/O-efficient algorithms for sort-

ing concerns the behavior of the logarithmic factor [Ig(N/M)/lg(M/2DB)] in the

denominator of (1). The logarithmic term represents the number of merge passes

in the merge sort, which is always integral, thus necessitating the ceiling nota-

tion. The ceiling term increases from one integer to the next when N/M is an

exact power of M/(2DB). Thus over very wide ranges of values of N, of the form

Mi/(2DB) i < N/M <_ Mi+_/(2DB) _+1, for some integer i _> 1, the I/O complexity

of sorting remains linear in N. Furthermore, the possibility of i _> 3 requires an

extremely large value of N if the system in question has anything but the tiniest of

main memories. As a result, although the I/O complexity of sorting is not, strictly

speaking, linear in N, in practice it often appears to be.

4.2.2 Sorting Benchmark

The NAS IS benchmark is designed to model key ranking [5]. We are given an array

of integer keys Ko, Ki,... KN-1 chosen from a key universe [0, U), where U << N.

Our goal is to produce, for each i, the rank R(Ki), which is the position Ki would

appear in if the keys were sorted. The benchmark does not technically require that

the keys be sorted at any time, only that their ranks be computed. As an additional

caveat, each key is the average of four random variates chosen independently from a

uniform probability distribution over [0, U). The distribution is thus approximately

normal. Ten iterations of ranking are to be performed, and at the beginning of each

iteration an extra key is added in each distant tail of the distribution.

In order to rank the keys, we sort them, scan the sorted list to assign ranks, and

then re-sort based on the original indices of the keys. In the first sort, we do not

have a uniform distribution of keys, but we do have a distribution whose probabilistic

structure is known. Given any probabilistic distribution of keys with cumulative
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distribution function (c.d.f.) FK, we can replace each key value ki by k_ = FK(ki)

in order to get keys that appear as if chosen at random from a uniform distribution

on [0, 1]. Because the keys of the NAS IS benchmark are sums of four independent

uniformly distributed random variates, their c.d.f, is a relatively easy to compute

piecewise fourth degree polynomial.

For the sake of comparison, we implemented this first sort in four ways, using both

merge sort and three variations of distribution sorting. One distribution sort, called

CDF1, assumed that the keys were uniformly distributed. The next CDF4, used the

fourth degree c.d.f, mentioned above to make the keys more uniform. Finally, as a

compromise, CDF2 used a quadratic approximation to the 4th degree c.d.f, based on

the c.d.f, of the sum of two independent uniform random variables.

In the second sort, the indices are the integers in the range [0, N), so we used

a distribution sort in all cases. The rationale behind this was that distribution and

merging should use the same amount of I/O in this case, but distribution should

require less CPU time because it has no need for the main-memory priority queue

that merge sorting requires.

The performance of the the various approaches is shown in Figure 2. As we

expected, merge sort used more CPU time than any of the distribution sorts and the

more complicated the c.d.f, we computed the more CPU time we used. When total

time is considered, merge sort came out ahead of the distribution sorts. This appears

to be the result of imperfect balance when the keys are distributed, which causes

an extra level of recursion for a portion of the data. Interestingly, the quality of

our c.d.f, approximation had little effect on the time spent doing I/O. We conjecture

that this would not be the case with more skewed distributions, such as exponential

distributions. We plan experiments to confirm this. The jump in the total time for

the merge sort that occurs between 8M and 10M is due to a step being taken in the

logarithmic term in that range.

4.3 Sparse Matrix Methods

Sparse matrix methods are widely used in scientific computations. A fundamental

operation on sparse matrices is that of multiplying a sparse N x N matrix A by an

N-vector x to produce an N-vector z = Ax.

4.3.1 Sparse Matrix Algorithms

Before we can work with sparse matrices in secondary memory, we need a way of

representing them. In the algorithms we consider, a sparse matrix A is represented

by a set of nonzero elements E. Each e E E is a triple whose components are row(e),

the row index of e in A, col(e), the column index of e in A, and value(e), the value

of A[row(e), col(e)].

In main memory, sparse matrix-vector multiplication can be implemented using

Algorithm 1. If the number of nonzero elements of A is Nz, then Algorithm 1 runs

in O(Nz) time on a sequential machine.
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Figure 2: NAS IS benchmark performance

In secondary memory, we can also use Algorithm 1, but I/O performance depends

critically on both the order in which the elements of A are processed and which of

components of z and x are in main memory at any given time. In the worst case,

every time we reference an object it could be swapped out. This would result in 3Nz
I/Os.

In order to guarantee I/O-efficient computation, we reorder the elements of A in

a preprocessing phase. In this preprocessing phase, A is divided into N/M separate

M x N sub-matrices Ai, called bands. Band Ai contains all elements of A from

rows iM to (i + 1)M - 1 inclusive. Although the dimensions of all the Ai are the

same, the number of nonzero elements they contain may vary widely. To complete

the preprocessing, the elements of each of the Ai are sorted by column.

Once A is preprocessed into bands, we can compute the output sub-vector

z[iM...(i+l)M-1]

from Ai and x using a single scan, as shown in Algorithm 2. If we ignore the prepro-

cessing phase for a moment and assume that the elements ofx appear in order in exter-

nal memory, the I/O complexity of Algorithm 2 is N,/DB + [N/M]N/DB + N/DB.

The entire preprocessing phase can be implemented as a single sort on the nonzero

elements of A, with band index being the primary key and column being a secondary

key. This. takes_ 2Nz/DB [Ig(M/2DB)]Ig(Nz/M)I/Os, as explained in Section 4 ....2 1 Note, how

ever, that the preprocessing only has to be done a single time for a given matrix A.

After that, the main phase of the algorithm can be executed repeatedly for many
different vectors x. This is a common occurrence in iterative methods.
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(1) z _- 0;

(2) foreach nonzero element e of A do

(3) z[row(e)] -- z[row(e)] + value(e) x x[col(e)];

(4) endforeaeh

Algorithm 1: An algorithm for computing z = Ax where A is a sparse N x N matrix
and x and z are N-vectors.

4.3.2 The SMOOTH Benchmark

TPIE supports sparse matrices at a high level as a subclass of AMI streams. The

nonzero elements of a sparse matrix are stored in the stream as (row, column, value)

triples as described in the preceding section. AMI entry points for constructing sparse

matrices as well as multiplying them by vectors are provided.

In order to test the performance of TPIE sparse matrices, we implemented a

benchmark we call SMOOTH, which models a finite element computation on a 3-D

mesh.

The SMOOTH benchmark implements sparse matrix-vector multiplication be-

tween a N x N matrix with 27N nonzero elements and a dense N-vector. The result

is then multiplied by the matrix again. Ten iterations are performed.

The performance of SMOOTH is shown in Figure 3. Although we do ten itera-

tions of multiplication, and only preprocess once, the total time with preprocessing is

significantly higher that that of the multiplication iterations alone. As expected, I/O

is not a major contributor to this difference, because sorting only requires a small

number of linear passes through the data. The big difference is in CPU time. The

additional CPU time used in preprocessing the sparse matrix is roughly twice the

CPU time used in all ten iterations of the multiplication.

4.4 Dense Matrix Methods

Dense matrices appear in a variety of computations. Like sparse matrices, they are

often multiplied by vectors, and banding techniques similar to those discussed in the

previous section can by used. Another fundamental operation is multiplication of two

K x K matrices A and B to produce C = AB.

4.4.1 Dense Matrix Algorithms

Asymptotically I/O-optimal multiplication of two K x K matrices over a quasiring

can be done in @(K3/v/-MDB) I/Os [22]. There are at least two simple algorithms

that achieve this bound. The first algorithm, Algorithm 3, uses a recursive divide-

and-conquer approach. The second algorithm, Algorithm 4, also partitions the input

matrices, but all partitioning is done up front in a single permutation of each matrix.
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// Preprocessing phase:

(1) foreach nonzero element e of A do

(2) Put e into A[row(e)/Mj ;
(3) endforeach

(4) for i e-- O,N/M do

(5) Sort the elements of Ai by column;

(6) endfor

// Main algorithm:

(7) Allocate a main memory buffer Z M of M words;

(8) for i e-- 0 to rN/M1 do

(9) ZM +- 0;

(10) foreach nonzero element e of Ai do

(11) zM[row(e) -- iM] = zM[row(e) -- iM] + value(e) x x[col(e)];
(12) endforeach

(13) Write ZM to z[iM... (i + 1)i- 1];

(14) endfor

Algorithm 2: An I/O-efficient algorithm for computing z --: Ax where A is a sparse
N x N matrix and x and z are N-vectors.
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The matrix product is then produced iteratively, and a single final permutation re-

turns it to canonical order. Both algorithms assume the input matrices are stored in

row major order.

The I/O complexity of Algorithm 3 is

while that of Algorithm 4 is

12x/-3K 3

xf-M D B '

2 x/r3K 3

v/-_ D B
+ prep(K),

where prep(N) is the I/O complexity of the preprocessing and postprocessing steps,

which can be done by sorting the K 2 elements of the three matrices, giving us

K2 [2 lg(K/M)
prep(K) = 6_-_ | Ig(M/2DB)

In special circumstances, when B, D, K, and v/M are all integral powers of two, the

pre- and post-processing are bit-matrix multiply complement permutations, which

can be performed in fewer I/Os than sorting [10].

565



(1)
(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
(16)

(17)

if3K 2 < M then

read A and B into main memory;

compute C = AB inmain memory;

write C back to disk;
else

partition A at row K/2 and column K/2;

label the four quadrant sub-matrices AI,1, A1,2, A2,1, and A2,2 as shown in Figure 4;
partition B into BI,1, B1,2, B2,1, and B2,2 in a similar manner;

permute all sub-matrices of A and B into row major order;

Perform the (11)-(14) using recursive invocations of this algorithm

C1,1 4-- AI,IBI,1 + A1,2B2A;

C1,2 6-- AI,IB1,2 + A1,2B2,2;

C2,1 +-- A2,1BI,1 + A2,_B2,1;

C2,2 +-- A2,1B1,2 + A2,2B2,2;

Reconstruct C from its sub-matrices C1,1, C1,2, C2,1, and C2,2;

permute C back into row major order;
endif

Algorithm 3: A recursivc divide-and-conquer approach to matrix multiplication. Two

K x K intmt Inatrices A and B are multiplied to produce C = AB.

4.4.2 Dense Matrix Benchmark

TPIE has high-level support for dense matrices over arbitrary user-defined quasirings.

Operations supported include initialization, element-wise arithmetic, and matrix-

matrix multiplication. Matrix-matrix multiplication uses Algorithm 4. Separate AMI

entry points are available for the preprocessing permutation and the iterative multi-

plication itself, allowing a matrix to be preprocessed once and then multiplied by a
number of other matrices.

We implemented a benchmark, called DENSE, which constructs two K x K matri-

ces, preprocesses them, and then multiplies them. Times were recorded for both the

total benchmark and for the multiplication only. The results are shown in Figure 6.

As expected, the CPU time required to multiply the matrices follows a cubic path.

Because of read-ahead, I/O is almost fully overlapped with computation, making the

CPU and total time curves virtually indistinguishable. The cost of preprocessing the

matrices is approximately one third of the cost of multiplying them. Thus if several

multiplications are done with the same matrix amortization greatly reduces this cost.

5 Conclusions

We have presented a series of results demonstrating that I/O-efficient computation can

be made practical for a variety of scientific computing problems. This computation

is made practical by TPIE, which provides a high level interface to computational
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AI,I A2,1

A2,1 A2,2

Figure 4: Partitioning a matrix into quadrants

(1) partition A into K/x/-M/3 rows and K/v/M/3 columns of
sub-matrices each having v/--M/3 rows and v/-M-/3 columns;

// step (1) is shown in Figure 5

(2) partition B in a manner similar to A;

(3) permute all Ai,j and Bid into row major order;

(4) foreach i,j do

(5) Ci,j +- _k Ai,kBk,j;

(6) endforeach

(7) reconstruct C from all Ci,j;

(8) permute C back into row major order;

Algorithm 4: An iterative approach to matrix multiplication.

paradigms whose I/O complexity has been carefully analyzed. Using TPIE results in

only a small CPU overhead versus entirely in core implementation, but allows much

larger data sets to be used. Additionally, for the benchmarks we implemented, I/O

overhead ranged from being negligible to being of the same order of magnitude as

internal computation time.

If we replace the single disk on which the tests were run with D disks, where D

is on the order of 8, we conjecture that the I/O time required in our computations

could be reduced by a factor very close to D. In applications like DENSE, where I/O

overhead is already negligible, little would change, but in applications like NAS IS

and NAS EP, we would see a dramatic reduction in I/O overhead. As discussed in

Section 4, CPU time should not change appreciably. Recalling that a portion of the

I/O that would be reduced by a factor of D is already overlapping with computation,

we expect that in many case the I/O overhead (the portion that does not overlat)

with CPU usage) could be eliminated. We plan to assemble a parallel disk system to

evaluate this conjecture experimentally.

In addition to the problems discussed here, there are many other scientific com-

putations that we believe can benefit from careful analysis and I/O-efficient imple-
mentation. These include LUP decomposition, FFT computation, and multi-grid
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Al,1

A2,1

A2,1

A1,2

A2,2

A1,3

Am- 1,m- 1

Au,_-i

A_-- 2_

A_-- 1,_

A_

Figure 5: Partitioning a matrix into sub-matrices in step (1) of Algorithm 4. Each

sub-matrix Ai,j has Vfl-_3 rows and V_/3 columns. The number of sub-matrices

across and down A is _ = K/_/r-M-/3.

methods, all of which we plan to explore as the TPIE project continues. We also

plan to investigate the construction of a scan combining preprocessor as described in
Section 4.1.1.

Complementing this high level work, there are a number of potentially interesting
I/O related research topics concerning how environments like TPIE should interact

with operating systems. These include models of application controlled virtual mem-

ory and the behavior of TPIE applications in multiprogrammed environments where

the main memory available to a given process may vary over time.

In closing, we are encouraged by the results we have presented, which demonstrate

that I/O efficient computation using an abstract, high level model is practical. It is

important to realize, however, that this research is only in its infancy, and that many
more questions, both theoretical and practical, remain to be answered.
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